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FITTING A SERIES OF IMPULSE RESPONSES

BY CONSTRAINED ARMA MODELS



~-— -~~

ABSTRACT

A constrained autoregressive moving average (ARMA) model H

is used to fit a train of impulses response resulting from

the displacement signal of firing the M-139 machine gun . The

fitted constrained ARMA(2 ,].) model has only .38% residuals

sum of squares as compared with 20.34% by the least square

fitting assuming a determinis tic model for a ten impulses

experiment. The natural frequency of the system can also

be estimated directly from the fitted model. In a particular

experiment where the gun ~~~ ~~ nmed the titted model yielded

a natural frequency at 12.6 Hz while the actual firing f re-

quency was 12.58. Hence the f i t t i n g  techn ique can be

employed to facilitate the design of mounting syster’.

Key Words

Constrained ARMA

Train of ir~pulses response

Stochastic d i f f e rential equation

Natural  frequen cy

Curve fi t t i n g
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1. INTRODUCTION

To model responses of a second order system excited

by a series of impulses , such as the displacement of a

mounting system for firing a machine gun , one can super-

impose a series of impulse responses to f i t  a deterministic

curve . Assuming the errors being independent normal

random variables, the method of least squares can be

used to estimate the paramete rs . However, in practice ,

the errors are generally not independent ; consequently

the estimated parameters will be i n e f f i c i e n t  l eading

to erroneous estimation of the parameters .

The objective of this paper is to introduce a t ime

series technique which wi ll facilitate the f i t t ing  of the

response of a train of impulse3 data . The constrained autore-

gressive moving average ( ARMA ) model will  be used to f i t

a series of impulse responses , and the mathematical

justification will be derived. Since the model contains

only the system parameters , the constrained ARMA f it t ing

is easier to implement than the f ami l i a r  det -erir in ist ic  curve

fittinc’ method . Furthermore , the constrained ARMA model can

be physically interpr eted . Real data of the M- l39 machine

gun firing will be used ~o demonstrat e the constrained ARMA

model fit t in c~ and its application to solve a mounting system

fa i lure  problem .

F 

. 

• 1

_ _ _  _ _ _ _  _ _ _ _  __ _ _  _____________________ •- - —•-~~ ~~~- -~~~ —~~
- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-
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2. MODELING TECHNIQUES

The deterministic model is applicable when the curve

to be fitted is a known time function containing a set of

unknown time-invariant parameters. The sampled values of

this function at uniform time intervals, say A seconds , are

assumed to be the sums of the ut true u values and stationary

white noise.

Let denotes the N observations at discrete time index

t, and denotes a sequence of independent normal random van-

ables with mean zero and variance 
~a 

a
~ 

(0,cla
2), then

the deterministic model is represented by:

f ( 8, t)  + c~ ( 1)

f (B,t) the value of the curve at time t~ = tA

t~ continuous time; t,~ ~ 0

8 p-vector of time-invariant parameters ,

p~~~ 0

Note that if ?(8,t
~
) denotes the continuous time function,

- 

I 
then f(8,t) =

2.1 Response of a Second Order System Due to a Train

of Impulses

One frequently finds in practice that the curve to be

modeled is a response of a second order system excited by

an impulse or series of impulses. Let

I I - ~~~~~ E~~~~~-~ ~~~~~~~~~
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ç and W n be the damping ratio and natur~.l frequency of a

second order system whose in ç~ .t is a train of impulses

M

~ c~~S (t c
_t

k ) ,  where M denotes the total number of impulses
k=l

-i
and Ck and tk denote the strength and time of occurrence of

the kth impulse , then the response T ( 8 , t~
) satisfies the

differential equation

+ 2
~~ n ~~~~~~

_ T(8,t )  + ~~
2?(8~t )  =

k=1 
c~~

S( t C-t k ) ,

M
and ?(8,t

~
) = 

~ 
CkG (t c

_t
k ) (2 )

k=1

where G( t c
_t

k ) is the Green’s function given by

- — ~n
(tc

_t
k) sin c&1./1_~

2 (tc~
tk)u(tc

_t
k) (1G(t c tk — e  . ( )

wn
,/l_c 2

flere u ( t c~ tk ) denotes the unit step function whose value is

unity for t~ ~ tk and zero otherwise. An illustration of a

train of impulsesresponse is shown in Fig. 1 for 3 impulses.

Figure la shows the impulses of strengths C1, c2 and c3
disturbing the system at times t1, t 2 and t 3 respectively .
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Computed by Eq. 9, Figs. lb, ic and id show the respon. -~s of

the system due to the impulses ci5(t~
_t

i), c2s(t~
_t
2) and

c3S( t ~
_t

3) in the same order. Assuming the system is linear,

then the output f(8,t)  is simply the sum of the individual

responses , as shown in Fig. le. Note that neither the im-

pulses ’ strengths nor the time periods between the impulses

are assumed to be uniform.

2.2 Deterministic Curve Fitting of Discrete Data

Modeling of the continuous response f(~- , t ,.,) given by

Eq. (2) can be conveniently implemented if it is observed

at a uniform time interval. If f(~-,t )

denotes the observed values at discrete time t=l,2 ,.. .,N,

then
M

f(.~ ,t) = f ( 8  it  / 1~) = E ckG (tA tk) ( 4 )- - C k=1

and the model of Eq. (1) can be written as

M
Y = C G(tA-t~ ) + 

~
-t  ( 5)

k= 1 k

Assuming that 
~~~~~~~~ 

are NID(0,c 2), one can use the

nonlinear least squares method to estimate the parameters

~~~ 
W~~~i Ck and tk for k= l , 2 , .  .., M.

As illustrative examples , three sets of response data

were fitted. It will be discussed in Sec. 3 that the

digitized experimental data from firing the M-l39 machine

aun displayed in Figs. 2a, 3a and 4a are the responses of

second-order systems due to 1, 3 and 10 impulses respectively .

—-
~~~~~~~~~~~~ - --~~~~ ~~~~ _ _ _ _
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Using a nonlinear least squares minimization computer pro

gram to estimate the parameters , the best fit curves are

plotted in Figs . 2b , 3b , 4b , and three respective residuals

in Figs. 2c, 3c, and 4c. Figures 5a, Sb and Sc show the

plots of estimated autocorrelation functions of the residuals

displayed in Figs. 2c, 3c , and 4c.

2.3 Constrained ARMA Fitting Technique

It is seen from Figs. 2a, 2b and 2c that the deterministic

model fits the single impulse response data fairly well with

the relative sum of squares of residuals (sum of squares of -:

residuals sum of squares of the data x 100) of approximately

2%. However , the deterministic model does not satisfactorily

L 

fit the train of impulses response data shown in Figs. 3a and

4a since their respective residuals plotted in Figs. 3c and

4c have large relative sums of squares (11% and 20% respect—

ively). Furthermore , Figs. Sa, Sb and 5c shows that each

series of residuals are highly correlated , and it appears

that the deterministic model is not adequate.

The dependence among c~~’s can be adequately described

by an ARMA(n ,m) model , where n and m are , respectively, the

autoregressive and moving average orders [3]. Hence, let

= 
~~ ~~~~~~~~~~~ 

f a
~ 

- 

~ 

O
~
a
~
_
~ 

( 6 )

i

___
— ~- - — —;--

~~
;- -.

~
_ -

~~
- —.-.—-——.—~~~ 

- -
~

- -, 
~~

-— i
_
i

— a-.—
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where

= autoregressive parameters

= moving average parameters
ar ’s = orthogonal decompositions of C

t
’S,

at’s are N I D ( O i Oa
2 ) H

Combining Eqs . (5)  and ( 6 ) ,  it follows that

t
k~~~l

k k  =~~~~ j [Y t j
_
~~~ ckc(

~~iA -t k ) J + a
~ —~~~ O

J a~ _~

(7)

Since ar ’ s are NID (O ,cla
2 ), the model given by Eq. (7) can

be fitted using the non linear least square estimators in

the same manner as the deterministic model given by Eq. (1).

It is frequently found in practice that the order of the

residuals E t ’s can be assumed to be two or less. In fact ,

the estimated autocorrelation functions plotted in Figures P

5a, 5b and Sc suggest that 
~~~~~~~~~ 

are of second-order . There-

fore, model (7) may be simplified by assuming that n=2, m=1

and Eq. (7) becomes:

M M
y — c G ( t A — t  ) = q, l [y 

~.l
_ 

~ C G (~~TA—t ) J

+ •2[Yt 2
_
~~~

ck
G (t_2A_t

k)J +

- — — —— - 
~~~~TL ~~~~ —--.-—--- — ~~~I~~~~~~~~~~~t ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --
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or

= l
’
~
’t.- l + 

~2~ t—2 
+ a

~ ~
O 1a~~ 1

+ 
k~ l

k k i k 2  k (8)

Note that fitting model (8) to the response data is

rather inconvenient, as there are 2M+3 parameters to be

estimated. In order to simplify this problem it is assumed

that and G (tA_tk) are from the same system, and model (8)

is simplified to (see appendix for proof)

= ~l~ k—l + ‘~2’
~t— 2 + a

~
—O 1a~~ i

where •l’~ 2 
and 01 are functionally related to ~ and Wn~

Let a = and b = ü~~/1-~
2 , then

= 2e~~~ cos bA (10)

= —e 2
~~ (11)

0
1 

= —P± I~
2 — i ,~ e1~ <1 ,

2P — b sinh 2aA —a sin 2bA (12)— a sin bA cosh aA-b sinh aA cos bA

Although model (9) has an appearance of the ARMA model,

it differs from the latter in many respects. The most pro-

nounced one is that the parameters ~~~ q~ and 81 are func-

tionally related, as clearly shown by Eqs. (10), (1.1) and

(12), while those of the ARMA model are not. Furthermore ,

— ~~——~~~ 
K
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Eq. (11) shows that p 2 in model (9)  is always negative , and

the value of 
~2 

in the ARMA model does not have this restric-

tion. To distinguish model (9 )  from the general ARMA (2,l) model ,

it is called the constrained ARMA (2,l) model [4] or uniformly

sampled autoregressive process of order 2 ( U S A ( 2 ) )  ( 3 ) .

Note that Eqs. (10,11, and 12) show that 
~~ 

and

can be uniquely determined from ~~~, w~ and A . Hence the para-

meter ~ and can be estimated directly from digitized data

using model (9).

2.4 Examples of Constrained A RMA Modeling

The data plotted in Figs. 2a, 3a and 4a was modeled

using Eq. (9). The least sciuares estimators of ~ and are

obtained by Eas. (9— 12), and the continuous

and discrete parameters are tabulated in Table 1. The fitted

curves are plotted in Figs. 2d , 3d and 4d; the respective

a
~
’s are plotted in Figs. 2e, 3e and 4e. Finally , the esti-

mated autocorrelations of the at’s are shown in Figs. Sd ,

5e and Sf. Since the constrained ARMA model contains only

two parameters, ~ and ~~~~~~ the estimation procedure is simple

and the computer time required is greatly reduced. For ex-

ample, the approximated computer time required to fit the

data shown in Fig. 4a was reduced by a factor of 10. It is

also apparent from Figs. 2e, 3e, 4e, Sd , 5e and Sf that the

constrained ARMA fitting technique yields the curves that

fit the data remarkably well.

The constrained ARMA(2 ,1) model is used because its

parameters are directly related 
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to the system under studies, and these parameters can be

physically interpretted . But if the system parameters are

of secondary impor tan~.e, the (unconstrained ) ARMA (2 , l)

model can also be used .

3. APPLICATION

The three sets of data used as examples previously are

from experiments of firing the M-l39 machine gun mounted on

a table composed of a table top and two cantilever beams

sketched in Fig. . The mounting shown is adjus-

table so that the effec tive lengths of the beams can be

varied . The M-139 machine gun was set to fire one , five and

ten rounds, and the table displacements were recorded during

these firing experiments. The data shown in Figs. 2a and 4a

are the displacement of the table during the experiments of

firing the M-l39 machine gun one and ten rounds respectively.

There are occasions when the M-139 machine gun was set to

fire 5 or 10 rounds, but it failed consistently after 3 suc-

cessive fires; and the data displayed in Fig. 3a is an example

of the table displacements obtained from such experiments.

The displacements of the table sketched in Fig. 6 are

characterized by the second order d i f f e r e n t i a l  equation :

..i
—

~~
—-  r ( 8 , t )+ 2~~w —.

~~
.-- T(~3 , t ) +~ 2 F ( ~~, t ) = I(t )

dt
~~

2 -. c - n dt~ - c n — c c

where I(t
~
) is the input force , and r~, w~ and 

~
(
~~v

tc) are

_ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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as described in Section 2. During the experiments of firing

the M-139 machine gun, the input force can be closely ap-

proximated by a series of impulses, each with occurring

time tk and strength ck, k = l,2,...,M. It is assumed that

during the course of experiments the table vibrates random-

ly, hence the white noise , Z(tc)i is specified as an addi-

tional input. It has been shown in Section 2.3 that the

discrete observations of the table disp lacement Y~~’s can be

modeled using Eq. ( 9), and the results of constrained ARMA

modeling were given in Section 2.4.

During the course of firing experiments , the average F.

firing frequency of the M-139 machine gun , defined as the 
•

inverse of the average time intervals between two successive

fires can be estimated . Figure 7 shows a plot of relative

displacement of the receiver and the cradle of the M-139

gun used to estimate the average firing period, i.e.

S .(2 + —) inches16 2 secs = 0791 sec
(10—1) fires 6.5 inches fire

similar calculations (using computer) were carried out using

data from 10 additional experiments to obtain firing periods

of .0797, .0809, .0’~97 , .0782, .0792, .0809 , .0801, .0794 and

.0783 second. From these estimated firing periods , the

average firing frequency is 12.58 Hz. For the table mount—

ings associated with the experiments in which the M-l39 ma-

chine gun failed , the constrained ARMA modeling technique
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yielded an estimated table ’s natural frequency of 12.6 Hz H.

as shown in Table 1. Noting this, one can conclude that 
- 

-

during the firing experiments , the M—139 machine gun failed

because its firing frequency and the table ’s natural fre-

quency were of the same order of magnitude. It should also 
- 

-
~

be noted that the table used in the firing experiments which

the M—139 machine gun did not fail had different mountings

(i.e., different spring constants). The estimated natural
:‘ -

~frequencies of the table were different from the firing fre-

quency of 12.58 Hz; e.g., 12.0 and 25,7 Hz as shown in

Table 1.

5. CONCLUSION

1. It is shown that a constrained ARMA(2,l) model can

be used to fit the experimental responsesof a second-order

system due to a train of impulses assuming the noise is also

an output of the system.

2. The constrained ARMA (2,l) model is superior to the

signal plus white noise model because of (i) less parameters,

(ii) less computer time and (iii) less residuals.

3. The constrained ARMA(2,l) model can be physically

interpreted in terms of damping factor , ç, and natural fre-

quency,w~ ; hence it can be used in designing the machine gun

mounting system.
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APPENDIX

Suppose that and G (t
~
_t
k

) are from the same system;

i.e., is a uniform sampling of c(t
~
) governed by a sto-

chastic differential equation

d2 dc(t )+2~ w — c (t )+w 2 E (t ) = Z(t ) A.l
dt 2 n d tc c n c c

where Z(tc) is the white noise process with properties

E(c(t
~
)) 0, E(Z(tc)Z(tc+T)) = a

~~
2
~~~~

T ) .  The discrete pro-

cess is represented by [1,2,4],

= 41ct_i + ~2
et~2 

+ at —O 1a~_1 
A .2

where 
~l’~~2 

and 01 are as defined by Eqs. (10), (11) and (12).

Also G(t
~
-tk) defined by Eq. (3) can be written as

—a (ti
~
_t
k)G(t

~
-tk

) = e sin(b(tt
~
_t
k

))U(t
~
_t
k)/b A.3

Suppose that (t_2)
~
_t
k ~ 0, then U (t

~
_t
k) = 1, and

using •i = 2e ’
~~ cos b~, 4~2 = —e 2

~~ and Eq. A.3,

it can be shown by algebra that

G(t~
_t

k) - +i G(E Th~
.t
k) 

— •~ G(t_2~
_t
k) = 0 A.4

- - -- I - — .-- -—-.——--— - — -.-,----~~~~ --
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Since G ( t
~

_t
k ) = 0 for ti

~
_ t

k <O ~ it follows that

= 0 when -

t~~ tk < 0 or (t_ 2 )
~~

_t
k ~ 0. Hence Eq. (8) can be closely

approximated by Eq. (9); i.e.,

= 
~l~t—1 

+ 

~2’
~
’t—2 + a~—O 1a~ ...1 .

F
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ABSTRACT

Force data recorded during an experiment of firing

the M—l39 machine gun are analyzed using stochastic diff—

erential equation models . These models represent overall

M—l39 systems, which are composed of three systems: a

supporting table, a recoil system and a bolt assembly .

The analysis is made to decompose these force models to

obtain the parameters of the subsystems.

‘4

J
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1. Introduction

In a previous paper 14] , the table displacemen t data

resulting from the experiments of firing the M-l39 machine

gun has been analyzed using a constrained A RMA(2 ,l) model.

The model was fitted under the assumptions that the sig—

nals are a train of impulse responses and the noise is due

to random shocks. The constrained ARMA (2,1) model fits the
• table displacement data wel l ,  as the residuals var iances

are less than 0.4% of the variances of the data. The

damping ratio and natural frequency of the table were es—

timated from which it was shown that the M-l39 machine gun

j ammed when its firing frequency coincided with the table’s

natura l frequency. I
Physically a firing experiment contains not only the

table but also the M— 139 machine gun ; yet , the analysis of

the table displacement data did not reveal the gun dyn amics.

By examining a sketch of the f i r i ng  experiment shown in

L 

Fig. 1, it can be seen that  the table displacement data

was recorded af ~ir from the gun. Consequently, one expects

l i t t le  or no e f f e ct of the gun dynamics on the table dis-

placements. During the se f i r i n g  experiments, the reaction

force s at the mounting of the gun to the table were also

recorded. For an experiment of f i r in ’j  ten sucessive rounds

of the M-139 machine gun , the recorded forces , taken at the

four corners of the rectangular—shape gun ’s base , are shown

in Figs. (2A-2D) . Since these force~ were recorded much
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closer to the gun than the table displacements, it is

expected that these forces data contain the gun ’ s dynamics.

The objective of thi s paper is to f i t  the force data

into linear stochastic differential equation models. The

orders of the se models are expected to be higher than two,

as the force data contain the gun ’s as well as the table ’s

dynamics. Since the d i f ferential equation fitted to the

force . data describes a coupled system, a met hod of de-

composition is developed in order to interpret the model

in the form of the firing experiments’ subsystems.

- =—
~==~~~~~~~i. T~~ ,I~~~~~~1~~i ~~~~~~ ~~~~~
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2. Modeling Technique

The digitized force date was fitted to obtain a

stochastic differential equation model which is formulated

by letting tc denote a continuous time, and Z (ta ) denote

the white noise process with properties E(Z(t0) )  = 0 and

E(1(t )Z(t #s)) = c s(s), where s (s) is the Dirac delta

function. The continuous autoregressive moving average

process of orders ~i and in (~.M (n,m)) ,  denotes by X ( t
~

), can

be defined in terms of symbolic derivatives as

d
~

X ( t )  
X (t0)

Z(t )+ . .~~ b .  —,- Z(t
c j—l ~ dt 3 C

C (1)

where the coeff icients u . ’ s and b ’ s are real.
4

Let p~~, ~~~ 2,...,n be the characteristic roots; i.e., ~.t~~’s

a.re solutions of the equation

1 +cZ
~,L ]~

lJ + +C~ j •
ti 

~~o 0 (2)

The required conditions for process ( 1) to be stationary are

m<n and the real parts of all ~~~‘ s be negat ive [33 .

The autocovariance function of X ( t 0 ) is

y ( s) E ( X (t c)X(t c+ S ) )  = j~~l 
c~ ex p ( p 1l s I )  (3 )

4

- • - 
-

- -
~~~~~~~ ~~

-
. 

-
~~
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~~~~~~~~~~~ ~~~ ~~
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where

C
j  

= a~ ~~~~~~~~~~~~~~~~~~ ~ (~~~~~~

k=l , k~ j  J

= 1 + b
1
p . + b2

p~ + ... + ~~~~~
IThen process (1) is sam7led at a uniform discrete t ime inter—

val , say ~ seconds , the resultant discrete proce ss , X~~~, can

be represented by a uniformly sampled autoregressive moving

average model (USAM ) of the form [2 ,3,4]

n n—l
xt — 

~~~ 
•iX t_ .i = at — 

j-~1 
O
]a~

_
~ (5)

where at is a discrete white noise process with variance cIa
2 ,

and ~~ ‘s and O~~’s which are functionally related to ct
1
’s and

b
a ’s defined by 12 ,3]

n n n • H

ll (l—e~
’i B ) = ll ( 1 — A . B ) = i —  E~~~.B

1
i=l i=l 1 i ]  1 (6)

and if v
i
’s are the n—i invertible roots (Jv ~ I<l) of the

polynomial

n 2 ‘~P (8) = Z C . (1—A 
~~~ 

U (l
~ A k B) (1—A B 1)

~ k=l ,k~ j  k (7)

ii

-- -~~~ ~~~- -~~ —~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ - 
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~~~

-
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then

n-i n—l
TI (1—v B) = 1 — 

~~ 0
j=j . j =l~~ (8)

The parameters of the contthuous process (1) can be

estimated from a set of uniforml y sampled data using max-

imum likelihood estimators or approx imated by least squares

estimators [ 2 ] . Therefore , for a given set of uniformly

sampled data , the sum of squares of at’s in model (5) is ex—

pressed in terms of continuous parameters. Using thi s

procedure , t- he sum of squares of at ’ s can be min imized to j
obtain the direct estimates of the continuous parameters.

H

- t

_ _ _ _



‘I— - --•-r-.---- ~-’-~~~~~~~~ - 
- - ________________ -

_____ 
( f 1  F - ~ 4~~ ~. T ~j~_ r :~~;4 J _FC R I . ~

i_ t [ & I I 4 . 4  ~ . ~ 
I 

~ • ...~~~~~~ L 1 1. 1 1 j  • 4_4.-j  ~ 1 1 4 I A I h 1 1 i 1 3 4 1 A A h •4..
.00 .05 •* 0 •16 20 .25 •~ 0 .95 .40 .45 .6(~

(8)  a 4 .3 ) Ii0~\.L. ~~~~ 96.3 1 
— _________ —

400. -

200:

£..4.J ..LL.L-1--L I I A Ia.. J_~~...4...J 3 j. . j 1 4  A I 
~~~ • I I I A j  I i & LA 1 1 1

.C ’~ .~5 .13 .15 .20 . 5  .90 .36 .40 .46 .50

_______ _____ 

C )  qc~ 1ouALS. $~Q 1.7 ~
400. -

zoo.

0. ~~ _ 
~~~~~~~~~~~~~~~~ -~~ 

—.- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

-200.
L4 .I._L.. - A. 4..-A. .LL..L 3 I L I .._4 -i I - . L - L4...J..3. ._.L~ i. I_.L 4 1 1 1 1 1 . 1  • l~~~~~3

00 .0Z .10 .16 . .2& .~~ .J1 .40 .4b .60

_______ 
C~~~ ’ F~~ RCE C : ~( IN3 F L R I N 9  ~tR11~). ~~~ U~O . —

:~ 
~~

J 
~~~~~~~~~~~~~ 

/

~~P’V ~~~~~~~~

’

—000. 
- • - 1_4_ A . ~~~~~~~~~~~~~~~~ I - - t 

~~~ 
I _ _~I -~.0 .1 .2 .3 .4 .5 •~~ .7 .0

________ 

(~~3 ~~~~~~~ 9~ 0LL. 1~SQ = ~b.B X

000.

_ _ _ _  

A~~~~~iy\ Jy ~~~~~~A~~~~~

— • I • 1 _ ... 4.._... L... .4__.. I — — •J-- — • •
.0 .1 .2 .3 .4 .i~ .~~ .~ .9

________ 

( F )  RES~~f lW1L S._ &~ Q 4 .2  1

$00.

400.

0.

-400 .
—ec~. ~~~~~~~~~~~~~~~~~~ .-. ~~~~~~~~~ ~~~~~~~~~~~ ~~ 1 _~~~~~ ~~ * 

I • - - —.0 .~ •. • _~ .4 .5 .0 .‘ .0

1~~1~
_ s -. )

I •
~~~~~~T~~~~~~~ - -~~ 

‘

~~~~~~ . ~~~~~H E L  ~~ ND R E S I J U A L S

Li - ~~~~~~~~~
. A



36
Ta ble 1 .

Est imated Cont Inu ous  Para meters

Force Model

Par ame t~ r~ Af ter  Firing During Firing

1.48 x 3 . 84  x io 13

I j  3 .00 x io 6 i.~~~ x 1 O ~~

12 3 .1] - •  ‘~. -L x 1O~

- 1 3  l 1 ~2 x ~ i o 7

— 2.~~2 x

-
~~~~ 

— 7 .37  x

b~ 3 .09 x ~~~~ 4 . 30 x i0~~

b~ 5 .39  x l0~~ 9 .3~ x

b3 5. 22 x 10~~ 1.~~3 x l0~~

— 8.01 x io
_ 12

b -1 . 2.42 : .~~~13
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There are four sets of measured forces in a firing cx— - -

periment. In order to reduce these force data , it is noted

from Fig. 1 that the effective force is horizontal, hence

the four force s are averaged to obtain a total force series - 
-

as shown in Fig. 2E. By examining this figure , one can see

that the force data should be fitted in two separate aspects; -

that is, (i)  force after the firing period and (ii) force

during the firing period.

The force data were modeled using the method suxmnarized

in Sec. 2. The adequate model for the force after firing

are found to be AM( 4 ,3) and for the force during firing are

AM ( 6 , 5) .  The continu ous and discrt~t~ parameters of the two

models are tabulated in Table 1. The force after firing is

shown in Fig. 3A and the fitted model and at’s are shown in

Figs . 3B and 3C. Mote chat the tJ SAM (4 ,31 models f i t s  the

data well , as the sum of squares of at ’ s is only 1. 7% of the

sum of squares of the force dat a afte r f i r ing.  The adequacy

of the fitted USAM (4 ,3) model can be established from the

estimated autocorrelations of the residuals. Figure 4A shows

that the estimated autocorrelation values at various lags are

below the 2a limits (indicated by dotted lines) . Therefore ,

the assumption that the at ’ s are uncorrelated is not violated .

Figs . 3D-3F show the force during f i r ing,  the fitted

U SAM (6 , 5) model , and the at ’ s. The adequacy of the fitted

USAM (6 , 5)  model is apparent from the estimated autocorrelations
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of at ’s shown in Fig. 4B. The sum of squares of at ’s being

approx imately 4 .2% of the sim~ of squares of the data.

It should be noted tha t although the models fitted to

the force data are continuou s, their values can be estimated

at discrete time instants only. For this reason , the models

shown in Figs. 4b and 4e are referred to , respect ively, as

U sAM (4 , 3) and U S.AN(6 ,5) .

I

I
t

- 4 
1

- 
- 
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4. Decomposition of the Fitted AM Models

In order to associate the fitted AM (4 ,3) and AN (6,5)

models with the firing experiment, they are decomposed into

subsystems. Before the decomposition technique is introduced,

it should be pointed out that when the gun is operating, the

bolt assembly moves relative to the gun . The gun ceases to

operate when the bolt assembly and the gun are locked to—

gether. The fitted models reveal this phenomenon, as the

model fitted to the force after firing is of lower order

than the model of the force during firing.

4.1 Decomposition of the Force Model After Firing

(a) Theoretic Deterministic Model

When the M-139 machine gun ceases to operate, the bolt

assembly and the rest of the gun can be considered as one

mass. The experiment then can be modeled as a two degree—

of—freedom system as shown in Pig. 5. Here N1, C1 and

represent the mass , damping coefficient and spring constant

for the table, and M2 , C2 ,  and k2 represent the recoil sys-

tem . When this system is excited by forces F1 and F2, the -

system dyn amic , designated by X1 and X2 can be written in

terms of the Laplace transform variable as

[M 1s
2+ (C1+C2 ) s+k1+k 2 ] — (C 2 s+k 2 ) X1 (s) F1 (s)

— (C 2s+k 2 ) M2s2+C2s+k 2 X2 (s) 
= 

F2 (s)

(9)

--
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For convenience let

T11 M1s2 + (C1 + C2 )s  + k1 + (10)

= C 2 s + (11) -

T M 5 2 + C s + k22 2 2 2 (12)

then

X1(s ) T22F1(s) + T12F2 (s) 
(T11T22 

- T12
2 )~~

X 2 (s) T12F1(s) + T11F2 (s) ( 13)

The measured force as a function of t ime t is

X ( t)  = C2 a~ 
[X 2 (t )  — X1(t ) )  + k2 [X 2 (t )  — X1(t ) J  ( 14)

The Laplace transform of X ( t )  is

X ( s )  = T12 [X 2 ( s) — X 1 ( s ) )  (15) k
therefore

(T11T22 — T12
2 ) X ( s)

= T12 I (T12 — T22 )F1(s) + (T11 — T12 )P 2 (s )j (16)

In time d~~ain , Eq. (16) is of the form

(D 4 
+ ct 3D 3 + ci2 D2 + c~1D + 

~
z0) X(t)

I klk 2F2 ( t ) + D ( k 1c2+clk 2
)p

2 (t ) + D 2 [(c 1c2+M1k 2
)p

2 (t )_ k M F ( t ) l

+D3 IC2 (M 1
p

2 (t )  —M 2 P1 (t )  1) / M1M2 (17)

- ~~~~~~
- : :~~~~~~~~~~~~~~~~

- r~~~~~~~~
-
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where

a0 
= k

1k2/M1M2 
= w l w 2 (18)

= k1C2 /M1M2+k2C1/M1M2 2C 1w 1u 2
2+2C 2w 1

2u 2 (19)

a2 k1/M1+k2/M2+k2/M1+C1C2/M1M2 — 4C 1w1C2w2 (20)

2 2+wl +w2 (1+M2/M1
)

= c1/M1+c2/M2+c2/M1 = 2C 1w 1+2C 2w 2 (1+M2/M1) ,  (21)

and c2 . ~2 are , respectively, the damping ratio and

natural frequencies of the table and recoi l system.

(b) Comparison Between the theoretic deterministic

Model and the f i t ted AM(4 ,3) model.

The AM (4 ,3) model fitted to the force af ter firing is

CD 4 + a3D3 + cz2D2 + ct1D + a
0
) X ( t )

= (1 + b1D + b2D2 + b
3

D
3 ) Z ( t )  (22)

Note that the right han d side of Eq. (22 )  cannot be interp— — 
-

reted in terms of the parameters in the right hand side of

Eq. (17) due to the unknown nature of ?1(t) and F2 (t ) .

However , the left hand side of Eq. ( 17) and Eq. (22) are

the same ; therefore , Eqs. (18—21) al so define a0, a~ , a2 , and

Ct
3 

of Eq. (22 ) in terms of the M— l39 f iring experiment sub-

system parameters.

I 
- Since the exact solutions for M1, C1, k1, M2, C2, and

k2 using Eqs. ( 18—21) are not possible , an approximation

method is developed. It can be seen from Eqs. ( 18—21) that
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if and M
2 art measured , then the values of ~~~~ w~~, C 2 and

are identifiable. Since M
1 and are not known , the

ratio M2/M1 is neglected using a ,~riori knowledge that the
mass of the gun is much ~w~a11er than the effective mass of - 

I

the table . Equations (20) and (21) can now be written,

a2 = + w 2 
+ (23 )

a3 = 2C 1~c*~ + ‘
~24 )  

-

Now let’s consider the autoregressive roots U1I 
~‘2’ ~3 

and

such that

(D-.p 1) (D—~i2) (D—ji 3
) (D— ~i4) = (D4+-~3D

3+a2D
2+cx1D+

c,
0) (25)

It fo).lows from Eq. (25 )  that

Ct
0 

=

U
1 

+ + + ~i
2

~~~~~p
4

)

(26 )
a2 = 

~1~ 2 ~ ~
1 l~ 3 + + ~ 2~4 3 + +

± “2 + 1~I 3 
+ u 4 )

4 T
1

I— -~ -- - 
_ _ _
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Table 2.

Est imates of Subsystems Parameters L
from Force Models.-

I.

Support ing
Force Table Recoil Bolt

Model C 1 C 2 C 3
_______  ______ 

(Hz ) 
______ 

(Hz) 
______ 

(Hz) - -
~

After -;

Firing .13 26 .4  .69 11,7 — —— — — —
During

Firing .004 25.9 .03 13.1 .79 73.8
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Comp~iring Eqs. (18, 19 , 23 and 24) with ~qs. (26), it can
be seen that

- 

2 1/2= — C
1

(~)
j

~ ± w 1 (~~~~
1 

— 1)

± W
2 (27 )

Therefore , the approx imate values of the damping ratios and

natural frequencies of the table and the recoil system can

be found from the autoregressive roots of the fitted model.

The se values are given in Table 2.

Li

_ _  

A ’  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
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The force during f i r ing is visualized to be from a three—

degree of freedom spring, mass , and damper system as shown in

Fig. 6. Here k l,L~ 
C1 an d M1 repr esen t the table, k2 , C2 and

M2 repre sent the recoil system and k 3, C3 and M3 represent

the bolt assembly. Usinq a similar approach to estimate the

model it can be shown that the model of the force during f i r—

ing is of order six. Knowing that the mass of the bolt assemb— 
-~

ly is much smaller than the mass of the gun , the approximate

damping ratios and natural frequencies of the table , recoil

system and bolt assembly can be obtained from the autoregress—

ive roots. The value s of the se parameters are also given

in Table 2.

it should be pointed out that in a previous paper a set

of table displacement data from the same firing experiment

has been analyzed. The estimates of the table ’s damping ra-

ti o and natural  frequency were .176 and 25. 7 H z [4] . It can

be seen from Table 2 that the estimates of the table’s nat—

ural frequency , using models from force signals after and

during f i r inq  are , 26 .4  and 25 .9  Hz , respective ly . Although

the force models are decomposed using an approximation method ,

the estimates of the table ’s natural  frequency are well in

agreement with the nrevious estimate of 2 5 .7  Hz .  Decomposi-

tions of force models after and during firing also yield

estimates of the table ’s damping rat io.  The values of these
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estimates, shown in Table 2 , are . 13 and .004 as compared
with the previous estimate of .176 .

5. Conclusions

(i) The force data were fit ted in two parts: düri,ng and

after the firing period . The adequat e model for the

force during firing is a continuous autoregressive

moving average model of orders 6 & 5 IAM (6,5)), with

the sum of squares of residuals approx imately 4 .2%

of the total sum of squares. The model fitted to the

force after  f ir ing is AM (4 ,3) with the residuals sum

of squares estimated to be 1.7% of the total sum of

squares.

(i i)  The M-139 exper iments are visualized to be composed

of three subsystems. They are a table , a recoil

system an d a bolt assembly. Assthning that the table ’s

mass is much larger than the gun’s mass, and that the

gun ’ s mass is muc h larger than the mass of the bolt

assembly, an analysis is made to decompose the force

data models. As a result of this decomposition , the

damping ratios and natura l frequencies of the three

subsystems were obta ined .

(iii)  The est imate of the table ’ s natural frequency is

25 .9 Hz when the model for the force during the

firing period was used and 26 .4 Hz when the model

for the force after the f i r ing per iod was used .

The se values are in agreement with the estimate of

I H

_ _ _ _  
_ _ _ _  

_ _ _  

1- ’-
.

_______________ — 

;
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the ta ble ’ s natura l frequency of 25 .7 Hz using the
model fi tted to the table displacement data published

earlier . Using the mode]. for the force data during

and after firing, the table’s damping ratio is esti-

mated as .004 and .13 , respectively. The table’s

damping ratio obtained from the table displacement

model was .176.

6. Acknowledgement

The project was supported by tht . Army Research Of f ice a :

DAAG 2 9—78—8—0081. 
- - ,

- _____ ~-~ --~~~~~~~~~~-~-- 



- 

51
- BISLIOGRAPIIY

-; - 1. GAY , H . P. ( 1969) .  Analog simulation of the 2Omm gun,- 11-139. Report No. 1436 , Ballistic Research Labs ,
- Aberdeen Proving Grounds, Maryland.

- 
2 .  PERL , J. and SCHARF, L. L. ( 1977).  Covarj ance-j nvarj ant

- digital f i l tering,  IEEE Trans. ASSP — 25 , 143 — 151.

3. P HADKE , M. S. and WU , S. M. ( 1974) . Modeling of contin—- !-: uous stochastic processe s from discrete observations withapplication to sun spot data. J. Amer. Statist . Assoc~ ,
- 

69 , 325—329 .

4 . UNGPI yAKUL , T . and WU , S. M . ( 1979) . Fitting a series- of impulse respon ses by constrained ARMA models, to ap-pear in Techn ometrics .
- 5 . WU , S. M . ( 1977). Dynamic data system : a new modeling- 
- approach , Trans., ASML~, 3, 99 , 708—7 14..

- 6 . MU, S . M . and PAND IT , S. M. (1979) .  Time Series and
- Systems Analysis: Modeling and Applications, forth-

coming book to be publ ished.

I

I


